An Interpretable Deep Learning Classifier for Epileptic Seizure Prediction Using EEG Data
نویسندگان
چکیده
Deep learning has served pattern classification in many applications, with a performance which often well exceeds that of other machine paradigms. Yet, general, deep used computational architectures built, albeit partially, by ad hoc means, and its decisions are not necessarily interpretable terms knowledge relevant to the application it serves. This is referred as black box problem, certain such epileptic seizure prediction, can be serious impediment. The purpose this study investigate an classifier for EEG-driven prediction. neural network because layers visualized interpreted result novel architecture where learned weights follow from signal processing computations frequency sub-band spatial filters. Consequently, extracted features no longer abstract they correspond commonly decoding EEG data. In addition, uses layer-wise relevance propagation reveal pertinent further explain leading decisions. prediction experiments using CHB-MIT data set, method produced results improved on state-of-the art, first layer filters corresponding clinically bands, input channels brain location originates contributing most significantly predictions.
منابع مشابه
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
Brain status information is captured by physiological electroencephalogram (EEG) signals, which are extensively used to study different brain activities. This study investigates the use of a new ensemble classifier to detect an epileptic seizure from compressed and noisy EEG signals. This noise-aware signal combination (NSC) ensemble classifier combines four classification models based on their...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملPrediction of Epileptic Seizure by Analysing Time Series EEG Signal Using k-NN Classifier
Electroencephalographic signal is a representative signal that contains information about brain activity, which is used for the detection of epilepsy since epileptic seizures are caused by a disturbance in the electrophysiological activity of the brain. The prediction of epileptic seizure usually requires a detailed and experienced analysis of EEG. In this paper, we have introduced a statistica...
متن کاملEpileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System
BACKGROUND Seizure prediction can increase independence and allow preventative treatment for patients with epilepsy. We present a proof-of-concept for a seizure prediction system that is accurate, fully automated, patient-specific, and tunable to an individual's needs. METHODS Intracranial electroencephalography (iEEG) data of ten patients obtained from a seizure advisory system were analyzed...
متن کاملA MapReduce-based rotation forest classifier for epileptic seizure prediction
In this era, big data applications including biomedical are becoming attractive as the data generation and storage is increased in the last years. The big data processing to extract knowledge becomes challenging since the data mining techniques are not adapted to the new requirements. In this study, we analyse the EEG signals for epileptic seizure detection in the big data scenario using Rotati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2022
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2022.3176367